
TOPIC  2 
 

Population and sample, their characteristics. Estimation of the true values of measured value 
Within the physical sciences there are many problems which may have an exact answer, but in the life sciences many of 

the questions asked may not have a fixed answer.  

Biostatistics is the study of statistics as applied to biological areas. Biological laboratory experiments, medical research 

(including clinical research), and health services research all use statistical methods. Many other biological disciplines rely 

on statistical methodology. 

Technological advances continually make new disease prevention and treatment possibilities available for health care. 

Consequently, a substantial body of medical research explores alternative methods for treating diseases or injuries. Because 

outcomes vary from one patient to another, researchers use statistical methods to quantify uncertainty in the outcomes, 

summarize and make sense of data, and compare the effectiveness of different treatments.  

A course in introductory biostatistics is often required for professional students in public health, dentistry, nursing, and 

medicine, and for graduate students in nursing and other biomedical sciences, a requirement that is often considered a 

roadblock. 

In this chapter we‟ll study basic notion of biostatistics. 

 2.1. Important definition 

Probability of an event can be expressed as a ratio of the number of likely outcomes to the number of possible 

outcomes. It is denoted by p and must be between 0 and 1. Probability of an event not occurring is equal q=1-p. 

Types of data. Choice of statistical technique depend on the type of data. Data will be from one of 4 scales of 

measurement: nominal  (is divided into qualitative categories or groups – male/female, black/white), ordinal (data can be 

placed in a meaningful order – 1
-st

/2
-nd

/3
rd

), interval (have equidistant points between each of the scale elements – 

temperature scale), ratio (The factor which clearly defines a ratio scale is that it has a true zero point - the Centigrade scale 

has a zero point but it is an arbitrary one. The Fahrenheit scale has its equivalent point at -32
o
.) Data may also be 

characterized as discrete (can take only certain values and none in between – the number of syringes used in a clinic on any 

given day may increase or decrease only by units of one) or continuous (may take any value, most  biomedical variables are 

continuous – blood pressure). 

A variable is a quantity that may vary from object to object. 

A sample (or data set) is a collection of values of one or more variables. A member of the sample is called an 

element. 

The sample space or population is the set of all possible values of a variable. 

The size of a sample is the number of elements in the sample. 

A statistic is a numerical characteristic of a sample. 

A parameter is a numerical characteristic of a population. 

2.2. Data Distributions  

Any individual data value belongs to or originates from some population of values that has certain properties that are 

collectively designated as a distribution.  

Distributions describe the frequency of occurrence of individual data values about some specified central value: a mean 

or median as defined below. Distributions are characterized by a probability distribution function, which is expressed in 

terms of distribution parameters that relate to the central tendency and the dispersion of values about this central value.  

The normal or Gaussian distribution has a typical bell-shaped symmetrical frequency of occurrence below and above 

the mean. Nonnormal distributions have a nonsymmetric occurrence frequency, and such distributions can be made to 

approach normality by an averaging process.  

2.3. Characterizing distributions (descriptive statistics) 

A database that is presumed to have a normal distribution may be characterized by two types of statistical parameters: 

one that establishes its central value (these measures include mean, mode and median) and one that characterizes the spread 

or dispersion of values around the central value.  

Two important characteristics of any distribution are the “center” and the variability. 

 

 

Fig. 2.1 Characteristics of any distribution 



The mean (frequently known as the arithmetic average), variance, and standard deviation can be realized in two 

ways: 1) as a true parameter value based on extensive measurement or other knowledge of the entire population, in which 

case these parameters are designated by the symbols , 2
 and  respectively or 2) as estimates of the true values based on 

samples from the population, in which case they are designated by the symbols х , s
2
 and s respectively.  

 

2.3.1. Mean 

The arithmetic mean is the sum of the individual values in a data set divided by the number of values in the data set. We 

can compute a mean of both a finite population and a sample. For the mean of a finite population (denoted by the symbol µ), 

we sum the individual observations in the entire population and divide by the population size, N. When data are based on a 

sample, to calculate the sample mean (denoted by the symbol ( х ) we sum the individual observations in the sample and 

divide by the number of elements in the sample, n. The sample mean is the sample analog to the mean of a finite population. 

Formulas for the population and sample means are shown below: 

Population mean (µ): 
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Example . Calculation of Mean (n=5) 

 

 94
5

4701 



n

х

x

n

і

і

 

 
 

 

 

Sample mean for a frequency distribution 
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Example . Calculation of mean for a frequency distribution (n=10). 

Index (i) x f 

1 70 2 

2 80 2 

3 95 1 

4 100 3 

5 125 2 
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2.3.2. Mode 

The mode (Mo) is the observed value that occurs with the greatest frequency. It is found by simple inspection of the 

frequency distribution. 

For example, the distribution consisting of the elements 6, 9, 9, 5, 8, then mode would be 9. 

 

2.3.3. Median  

The median is the figure that divides the frequency distribution in half when all the scores are listed in order. When a 

distribution has an odd number of elements, the median is therefore the middle one; when it has an even number of elements, 

the median lies halfway between the two middle scores (i.e. it is the average or mean of the two middle scores). 

Index (i) x 

1 70 

2 80 

3 95 

4 100 

5 125 

Σ 470 



For example, in a distribution consisting of the elements 6, 9, 15, 17, 24, the median would be 15. If the distribution 

were 6, 9, 15, 17, 24, 29, the median would be 16 (the average of 15 and 17). 

 

2.3.4. Variance 

When the mean x of a set of measurements has been obtained, it is usually matter of considerable interest to measure the 

degree of variation or dispersion around this mean. Are the x‟s all rather close to x, or are some of them dispersed widely in 

each direction?  

Common measures of dispersion, used more frequently because of their desirable mathematical properties, are the 

interrelated measures variance and standard deviation. Instead of using the absolute value of the deviations about the mean, 

both the variance and standard deviation use squared deviations about the mean, defined for the its observation as (xi-µ)
2
.
 

Formula  
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which is called the deviation score method, calculates the population variance (σ
2
) for a finite population. For infinite 

populations we cannot calculate the population parameters such as the mean and variance. These parameters of the 

population distribution must be approximated through sample estimates. Based on random samples we will draw inferences 

about the possible values for these parameters. 

The sample variance is defined as the sum of the squared deviations from the mean, divided by n-1.  
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The use of the divisor (n - 1) instead of n is clearly not very important when n is large. It is more important for small 

values of n. 

The variance is measured in the square of the units in which the x‟s are measured. For example, if x is the time in 

seconds, the variance is measured in seconds squared (sec
2
). It is convenient, therefore, to have a measure of variation 

expressed in the same units as the x‟s, and this can be done easily by taking the square root of the variance. This quantity is 

the standard deviation. 

Example. 

Calculation of Population Variance 

Suppose we have a small finite population (N = 5), with the following blood sugar values: 70, 80, 95, 100 and 125. 

Solution 
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Example. 

Calculation of sample variance 

Blood Cholesterol Measurements for a Sample of 10 Persons 276, 304, 316, 188, 214, 252,333, 271, 245, 198. 
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Variance 
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xi xi-µ (xi-µ)2 

70 -24 576 

80 -14 196 

95 1 1 

100 6 36 

125 31 961 

Σ 0 1 770 

Person xi xi- õ  (xi- õ )
2
 

1 276 16,3 265,69 

2 304 44,3 1962,49 

3 316 56,3 3169,69 

4 188 -71,7 5140,89 

5 214 -45,7 2088,49 

6 252 -7,7 59,29 

7 333 73,3 5372,89 

8 271 11,3 127,69 

9 245 -14,7 216,09 

10 198 -61,7 3806,89 

Σ 2597 0 22210,1 



2.3.5 Standard deviation 

This is the most commonly used measure of the spread or dispersion of data around the mean.  

A related term is the population standard deviation (σ), which is the square root of the variance: 
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The sample standard deviation is defined as the square root of the sample variance (s
2
):  
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Sample standard deviation for a frequency distribution is:  
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2.3.6. Degrees of freedom 

The degrees of freedom is the number of independent differences available for estimating the variance or standard 

deviation from a set of data; it is one less than the total number of data values n, since one degree of freedom (of the total 

degrees equal to n) is used to estimate the mean. The degrees of freedom (df) for sample variance and standard deviation is (n 

- 1). 

 

2.3.7. Relative standard deviation. Coefficient of variation 

Although the standard deviation of analytical data may not vary much over limited ranges of such data, it usually 

depends on the magnitude of such data: the larger the figures, the larger s. Therefore, for comparison of variations (e.g. 

precision) it is often more convenient to use the relative standard deviation (RSD) than the standard deviation itself. The 

RSD is expressed as a fraction, but more usually as a percentage and is then called coefficient of variation (CV). 

Often, however, these terms are confused. 

Sample: 
x

s
RSD   

%.100
x

s
CV  

It is an index, a dimensionless quantity because the standard deviation is expressed in the same units as the mean and 

could be used to compare the difference in variation between two types of measurements. 

Population: 
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2.3.8. The Sampling Distribution of the Mean  

If a random sample of size n is drawn from a normal population having a mean  and variance 2
, then the mean of 

the n values in the sample nx  is a random variable whose distribution has the mean  and a variance of n/2  or a standard 

deviation of n/ , which is frequently called the standard error of the mean. Note that this parameter, which establishes 

the reliability of the mean nx  decreases as the square root of n; it is necessary to quadruple the values n in order to hake the 

standard error of the mean. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2. Visualizing multiple distributions 

 

In fig. 2.2 we see that we can sample a large population multiple times. Each of our samples has an average and a 

variance associated with it. If we aggregated all of the averages from these samples, we can create a sampling distribution of 

the mean for the population. The standard deviation of this distribution is more properly known as the standard error of the 

mean (SEM or, simply, the standard error, SE). 

2.4. Normal distribution 

When information from a large population is examined it will be found that there will be many deviations from the 

mean. Both positive and negative deviations will occur with nearly the same frequency. Also small deviations will occur 

more frequently than large deviations. 

The normal distribution was discovered first by the French mathematician Albert DeMoivre in the 1730s. Gauss 

found that the normal distribution with a mean of zero was often a useful model for characterizing measurement errors. In the 

1890s in England, Sir Francis Galton found applications for the normal distribution in medicine. 

The normal distribution is determined by two parameters: the mean and the variance.  

The fact that the mean and the variance of the normal distribution are the natural parameters for the normal 

distribution explains why they are sometimes preferred as measures of location and scale.  

The normal distribution has three main characteristics. 

First, its probability density is bell-shaped, with a single mode at the center. As the tails of the normal distribution 

extend to ±∞, the distribution decreases in height and remains positive. It is symmetric in shape about µ, which is both its 

mean and mode. For a normal distribution the mean, median, and mode are all equal to one another. 

Another parameter, σ, along with the mean, completes the characterization of the normal distribution. The relationship 

between σ and the area under the normal curve provides the second main characteristic of the normal distribution. The 

parameter σ is the standard deviation of the distribution. Its square is the variance of the distribution. 

For a normal distribution, 68.26% of the probability distribution falls in the interval from µ – σ to µ + σ. The wider 

interval from µ – 2σ to µ + 2σ contains 95.45% of the distribution. Finally, the interval from µ–3σ to µ+3σ contains 99.73% 

of the distribution, nearly 100% of the distribution. The fact that nearly all observations from a normal distribution fall within 

±3σ of the mean explains why the three-sigma limits are used so often in practice. 

Third, a complete mathematical description of the normal distribution can be found in the equation for its density. The 

probability density function f(x) for a normal distribution is given by 
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Fig. 2.3. The standard normal distribution 

 

Note. Because these proportions hold true for every normal distribution, they should be memorized. 

 

Example.  

Therefore, if population‟s resting heart is normally distributed with a mean µ of 70 and a standard deviation S of 10, 

the proportion of the population that has a resting heart rate between certain limits can be stated.  

 
Fig. 2.4. Normal distribution of a resting heart rate 

Fig. 2.4 shows, because 68% of the distribution lies within approximately ±1 standard deviations of the mean, 68% of 

the population will have a resting heart rate between 60 and 80 beats/min. 

Similarly, 95% of the population will have a heart rate between approximately 70 ± (2 x 10) = 50 and 90 beats/min 

(i.e., within 2 standard deviations of the mean). 

The unique bell shape of the normal distribution curve may be characterized by an equation called the normal 

probability density function, which gives the probability of finding a given distribution value as a function of that value. To 

avoid having a separate equation for each measured parameter with its unique units, the function is adjusted to make the area 

under the distribution curve equal to one or unity, and this adjusted equation is called the standard normal distribution.  

The results of such calculations are given as tabular values. 

2.5. Student’s distribution (t-distribution) 

Student's distribution arises when the population standard deviation is unknown and has to be estimated from 

the data. 

Student's t-distribution is the probability distribution of the ratio  
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t is a random variable. 

 

Student‟s distribution is often referred to just as the t- distribution. 

 

The t-distribution is similar in shape to the normal, it has an expected mean of zero, but its variance depends on the 

degrees of freedom df associated with s, which is equal to (n - 1). As n approaches infinity, the t-distribution approaches the 

normal distribution and its variance approaches 1.  

Tables of t values, designated as tγ, at selected df (degrees of freedom) are given for various probabilities - 0.95, 



0.99, 0.999 etc. and usually called a critical t or tγ. 

As illustrated above, the t-distribution has many properties which differentiate it from the standard normal distribution.  

1. The Student t-distribution is different for different sample sizes.  

2. The Student t-distribution is generally bell-shaped, but with smaller sample sizes shows increased variability (flatter). In 

other words, the distribution is less peaked than a normal distribution and with thicker tails. As the sample size increases, the 

distribution approaches a normal distribution. For n > 30, the differences are negligible.  

3. The mean is zero (much like the standard normal distribution).  

4. The distribution is symmetrical about the mean.  

5. The variance is greater than one, but approaches one from above as the sample size increases (σ
2
=1 for the standard 

normal distribution).  

6. The population standard deviation is unknown.  

7. The population is essentially normal (unimodal and basically symmetric). 

2.6. Confidence limits of a measurement 

Whenever a mean is calculated there should be an estimate of variability with it, since to appreciate the mean fully we 

need to know how confident we can be that the population‟s true mean lies close to this value. If the SEM is given, we can 

estimate a confidence interval for the mean. A confidence interval gives an estimated range of values which is likely to 

include an unknown population parameter, the estimated range being calculated from a given set of sample data. We saw for 

normal distribution that there is a 68% chance of finding the true mean within one standard error of the mean. This range is 

therefore called the 68% confidence interval. 

In practice 90%, 95%, and 99% intervals are often used, with 95% being the most commonly used. 

The end points of the confidence interval are referred to as confidence limits. Interval estimates are often desirable 

because the estimate of the mean varies from sample to sample. Instead of a single estimate for the mean, a confidence 

interval generates a lower and upper limit for the mean. The interval estimate gives an indication of how much uncertainty 

there is in our estimate of the true mean.  

The narrower the interval, the more precise is our estimate. 

Confidence limits are defined as:   

n

s
tx    

where  

x  - mean of subsamples 

tγ - critical value of the t-distribution  with n - 1 degrees of freedom 

s - standard deviation of mean of subsamples 

n - number of subsamples 

The critical values for t are tabulated.  

 

Table 1. Critical values for t 
degrees of 

 freedom 
Confidence 

 0.95 0.99 0.999 

1 12.70620 63,65674 636,6192 

2 4.30265 9,92484 31,5991 

3 3.18245 5,84091 12,9240 

4 2.77645 4,60409 8,6103 

5 2.57058 4,03214 6,8688 

6 2.44691 3,70743 5,9588 

7 2.36462 3,49948 5,4079 

8 2.30600 3,35539 5,0413 

9 2.26216 3,24984 4,7809 

10 2.22814 3,16927 4,5869 

11 2.20099 3,10581 4,4370 

12 2.17881 3,05454 4,3178 

13 2.16037 3,01228 4,2208 

14 2.14479 2,97684 4,1405 

15 2.13145 2,94671 4,0728 

16 2.11991 2,92078 4,0150 

17 2.10982 2,89823 3,9651 

18 2.10092 2,87844 3,9216 

19 2.09302 2,86093 3,8834 

20 2.08596 2,84534 3,8495 

21 2.07961 2,83136 3,8193 

22 2.07387 2,81876 3,7921 

23 2.06866 2,80734 3,7676 

24 2.06390 2,79694 3,7454 

25 2.05954 2,78744 3,7251 

26 2.05553 2,77871 3,7066 



27 2.05183 2,77068 3,6896 

28 2.04841 2,76326 3,6739 

29 2.04523 2,75639 3,6594 

30 2.04227 2,75000 3,6460 

  1.95996 2,57583 3,2905 

To find the applicable value, the number of degrees of freedom has to be established by: df = n -1. 

Example   

Suppose that we conduct a survey of 19 millionaires to find out what percent of their income the average millionaire 

donates to charity.  We discover that the mean percent is 15 with a standard deviation of 5 percent. Find a 95% confidence 

interval for the mean percent.  

Solution  
We use the formula: 

n

s
tx     

We get  

19

5
15  t  

Since n = 19, there are 18 degrees of freedom.  Using the table (Critical values for t), we have that   

 tγ = 2.10  

Hence the margin of error is  

4.2
19

5
10.2   

We can conclude with 95% confidence that the millionaires donate between  

12.6% and 17.4% of their income to charity. 

Exercises 

 

Independent work in the class 

1. Find the medians of the following data sets: {8, 7, 3, 5, 3}; {7, 8, 3, 6, 10, 10}. 

2. A sample of data was selected from a population: {195, 179, 205, 213, 179,216, 185, 211}. Calculate variance and 

standard deviations. 

3. In a sample of 25 experimental subjects, the mean score on a post experimental measure of aggression was 55 with a 

standard deviation of 5. Construct a 95% confidence interval for the population mean. 

4. Suppose that a sample of pulse rate gives a mean of 71.3, with a standard deviation that can be assumed to be 9.4. How 

many patients should be sampled to obtain a 95% confidence interval for the mean that has half-width 1.2 beats per minute? 

5. The standard hemoglobin reading for normal healthy adult males is 15 g/100ml. The standard deviation is about 2.5 g/100 

ml. For a group of 26 male construction workers, the sample mean was 16 g/100 ml. 

a) Construct a 95% (99%) confidence interval for the male construction workers. What is your interpretation of this 

interval relative to the normal adult male population? 

b) What would the confidence interval have been if the above results were obtained based on 19 construction workers? 

c) Repeat b for 14 construction workers. 

d) Do fixed-level confidence intervals shrink or widen as the sample size increases (all other factors remaining the 

same)? Explain your answer. 

e) What is the half-width of the confidence interval that you would obtain for 14 workers? 

6. The mean diastolic blood pressure for 225 randomly selected individuals is 75 mmHg with a standard deviation of 12.0 

mmHg. Construct a 99% confidence interval for the mean. 

 

Homework 

Exercises 

1. Assume you have the following datasets for a sample: {3, 3, 3, 3, 3}; {5, 7, 9,11}; {4, 7, 8}; {33, 49} 

a) Compute s and s
2
; 

b) Describe the results you obtained. 

2. The following cholesterol levels of 10 people were measured in mg/dl: {260, 150, 165, 201, 212, 243, 219, 227, 210, 240}. 

For this sample:  

a) Calculate the mean and median. 

b) Calculate the variance and standard deviation. 

c) Calculate the coefficient of variation. 

3. Suppose we randomly select 20 students enrolled in an introductory course in biostatistics and measure their resting heart 

rates. We obtain a mean of 66.9 (s = 9.02). Calculate a 95% confidence interval for the population mean and give an 

interpretation of the interval you obtain. 

4. Suppose the sample size is 16 and the mean score is 55 with a standard deviation of 5. Construct a 99% confidence interval 

for the population mean. 



5. Suppose you want to construct a 95% confidence interval for mean aggression scores, and you can assume that the 

standard deviation of the estimate is 5. How many experimental subjects do you need for the half-width of the interval to be 

no larger than 0.4? 

6. The mean weight of 100 men in a particular heart study is 61 kg with a standard deviation of 7.9 kg. Construct a 95% 

confidence interval for the mean. 

7. The mean diastolic blood pressure for 225 randomly selected individuals is 75 mmHg with a standard deviation of 12.0 

mmHg. Construct a 95% confidence interval for the mean. 

 

Mathematical treatment of direct and indirect measurements  

3.1. Basics of measurements 

Measurement - assignment of numerals to represent physical properties. 

There are two types of measurements for data 

– Qualitative - non-numerical or verbally descriptive also have 2 types: 

• Nominal - no order or rank (for example: list); 

• Ordinal - allows for ranking but differences between data is meaningless (for example: alphabetical list). 

– Quantitative - numerical ranking also have 2 types: 

•  Interval - meaningless comparison (for example: calendar); 

• Ratio - based on fixed or natural zero point (for example weight, pressure, Kelvin). 

 

Categories of measurement 

• Direct Measurement: A process of obtaining the measurement of some entity by reading a measuring tool (for example: a 

ruler for length, a scale for weight, or a protractor for angle size, etc). 

• Indirect Measurement: method of measurement in which the value of a quantity is obtained from measurements made by 

direct methods of measurement of other quantities linked to the measured by a known relationship ;is a technique that 

uses proportions to find a measurement when direct measurement is not possible to obtain or is danger (for example: if 
the length and width of a rectangle are multiplied to find the area of that rectangle, then the area is an indirect 

measurement). 

 
Error analysis 

Experience shown that no measurement, however carefully made, can be completely free of uncertainty. Error analysis 

is the study and evaluation of uncertainty in measurement.  

In science, we use the term “error” as being interchangeable with “uncertainty.” As such, errors are not mistakes. 

 

Error – normal random variation not a mistake. 

 

If you have a no changing parameter and you measure this repeatedly the measurement will not always be precisely the 

same but will cluster around a mean Xo. The deviation around Xo – error term where you can assume your measurement is Xo 

as long is deviation is small. 

Error is the collective noun for any departure of the result from the “true” value.  

 

In general, the result of any measurement of physical quantity must include both the value itself (best value) and its error 

(uncertainty). The result is usually quoted in the form 

xxx best   
where xbest is the best estimate of what we believe is a true value of the physical quantity and Δx is the estimate of 

absolute error (uncertainty). 

The uncertainty discussed up is sometimes called the absolute uncertainty, the absolute error, or just the error.  

To characterize the quality of a measurement we define the relative uncertainty (the relative error), as the ratio of 

the uncertainty to the measurement itself: 

%.100
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
bestx

x
  

 

Measurement errors may be classified as either random or systematic, depending on how the measurement was 

obtained. 

 

An instrument could cause a random error in one situation and a systematic error in another. 

 

Random Error refers to the spread in the values of a physical quantity from one measurement of the quantity to the 

next, caused by random fluctuations in the measured value. This type of error also affects the precision of the experiment. 



Systematic Error refers to an error which is present for every measurement of a given quantity; it may be caused by a 

bias on the part of the experimenter, a miscalibrated or even faulty measuring instrument, etc. Systematic errors affect the 

accuracy of the experiment.   

Random errors are statistical fluctuations (in either direction) in the measured data due to the precision limitations of the 

measurement device.  Random errors can be evaluated through statistical analysis and can be reduced by averaging over a 

large number of observations.  

Systematic errors are reproducible inaccuracies that are consistently in the same direction. These errors are difficult to 

detect and cannot be analyzed statistically. If a systematic error is identified when calibrating against a standard, applying a 

correction or correction factor to compensate for the effect can reduce the bias. Unlike random errors, systematic errors 

cannot be detected or reduced by increasing the number of observations. 

 

Accuracy and Precision 

When one considers the quality of a measurement there are two aspects to consider. The first is if one were to repeat the 

measurement, how close would new results be to the old, i.e., how reproducible is the measurement?  Scientists refer to this 

as the precision of the measurement.  

Secondly, a measurement is considered “good” if it agrees with the true value.  This is known as the accuracy of the 

measurement.  But there is a potential problem in that one needs to know the “true value” to determine the accuracy. 

A good measurement must be close to the “true value” and be reproducible.   

 

Accuracy and Precision  

These two words do not mean the same thing.  

“Accuracy” deals with how close is a measured value to an accepted or “true value.   

“Precision” deals with how reproducible is a given measurement. 

 
Fig. 3.1 

Tactics to decrease error on practical measurements: 

1. Make Measurements several Times. 

2. Make Measurements on Several Instruments. 

3. Make successive Measurements on different parts of instruments (different parts of ruler). 

3.2. Error analysis for direct measurement 

A better way to estimate uncertainty is to make multiple measurements of the same quantity and analyze the dataset 

using statistical functions. 

Suppose we make n measurements of a quantity x and get the values x1, x2,...,  xn.( the values of each measurement 

being denoted by xi, where i takes on the values from 1 to n) 

Estimates of direct measured value. 

Either because of variability in the quantity x or because of inherent and unavoidable random errors in our measuring 

procedure, not all values of the individual measurements xi will be the same. Our best estimate of the “true” value of x is then 

given by the average or mean value of x: 
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Measured value xi (5 measurements): 

71, 72, 72, 73, 71. 
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The best estimate of the uncertainty in the individual values xi is the sample standard deviation s (or SD), defined as: 

Good Precision (Sm. Std) 
Good Accuracy (Xi ~ Xo) 

Good Precision (Sm. Std) 
Bad Accuracy (Xi <<  Xo or Xi >> Xo) 

Bad  Precision (Large. Std) 
Good Accuracy (Xi ~ Xo) 

Bad Precision (Large. Std) 
Bad Accuracy (Xi <<  Xo or Xi >> 

Xo) 
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The term di in this equation, called the deviation, is simply the

 

difference between the i
th

 measurement xi and the mean 

value x.  

If the deviations are all very small, then our measurements are all close together and are said to be precise.  

If the deviations of a measurement were averaged, the result would be zero because of high and low values would 

cancel each other. 

This is why the standard deviation is found by first squaring the deviations, then averaging these positive squares (using 

n-1 rather than n), and finally taking the square root of the result. 

For the five previous measurements, the standard deviation s is found to be: 

Measurement 

number, i 

Measured 

value, xi 

Deviation 

xxd i    

1 71 -0.8 

2 72 0.2 

3 72 0.2 

4 73 1.2 

5 71 -0.8 

 8.71x  0d  
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When we report the average value of n measurements, the uncertainty we should associate with this average value is the 

standard deviation of the mean, often called the standard error (SE). 

n

s
sx 

 

The standard error is smaller than the standard deviation by a factor of .
1

n
 

While the standard deviation indicates the amount of variation of the data about the mean, the standard error expresses 

how much the mean of n measurements would be expected to vary if the entire n measurements were repeated again. 

 

For our measurements standard deviation of the mean is 

.38.0
5

84.0


n

s
sx

 
Thus, our final answer to the question “what is our true measured value of x?”  is 

.38.08.71 
n

s
xx

 
Since uncertainty is related statistically to the width of a bell-shaped normal distribution, we can clarify the meaning 

of such a report by associating a confidence level with the uncertainty: 

xx
n

s
tx    

The confidence is defined to be the probability, stated as a percentage, that the “true” mean value actually falls within 

the limits mean ± uncertainty.  

n

s
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n

s
tx   

 
xxxx  

 tγ - coefficient from the standard normal distribution table at given degree of freedom (df=n-1) (is tabulated.) 

x is absolute error of measurement. 

 

95% confidence limits in our example is 

05.18.7138.0775.28.71   

Absolute error

 .05.1x

 Relative error 



%.46.1%100
8.71

05.1
  

 

Example 1. For the determination of the clay content in the particle-size analysis, a semi-automatic pipette installation is 

used with a 20 mL pipette. This volume is approximate and the operation involves the opening and closing of taps. 

Therefore, the pipette has to be calibrated, i.e. both the accuracy (trueness) and precision have to be established.  

A tenfold measurement of the volume yielded the following set of data (in mL):  

19.441 19.812 19.829 19.828 19.742 

19.797 19.937 19.847 19.885 19.804 
 

 

Solution 
The mean is 19.842 mL and the standard deviation 0.0627 mL. According to table for n = 10 is tγ = 2.26 (df = 9) .  

pipette volume = 19.842 ± 2.26 (0.0627/ 10 ) = 19.84 ± 0.04 mL  

Note that the pipette has a systematic deviation from 20 mL as this is outside the found confidence interval.  

 

Example 2.  For samples of 10 paired measurements, the mean difference  d  is 21.0, and the variance  2s  is 250. What are 

the 95% confidence limits for the difference between the population means  21   ? 

 

Solution 

Standard error of the mean difference is 0.5
10

2502


n

s
s

d
 

Degrees of freedom according to table for n = 10 is tγ = 2.262 (df=9,γ=0.95) . 

Confidence limits are 

3.110.210.5262.20.21 
d

std   

[9.7; 32.3] 

3.3.  Error analysis for indirect measurement 

In the majority of experiments the quantity of interest is not measured directly, but must be calculated from other 

quantities. Such measurements are called indirect. As you know by now, the quantities measured directly are not exact and 

have errors associated with them. While we calculate the parameter of interest from the directly measured values, it is said 

that the errors of the direct measurements propagate. This section describes how to calculate errors in case of indirect 

measurements. 

Suppose we have measured the value of a quantity x with an uncertainty, which we denote ∆x. In order to test a 

theoretical formula, suppose that we need to calculate y as function of x; i. e.,  y = f(x). We want to know the uncertainty in y 

due to the uncertainty in the value of x. The answer comes from the differential calculus: if y = f(x) and ∆x is small, then   

x
dx

df
x

dx

dy
y   

In the case where f depends on two or more variables (f(x, y)), we have: 

dy
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f
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Taking the square and the average, we get the law of propagation of uncertainty: 
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If the measurements of x and y are uncorrelated, then 0dxdy , and using the definition of s, we get: 
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Example  

f=x+y 

(x,y are measured direct) 

Standard deviation of the mean of f is 
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Example 1. 
The height of a cone is H=30cm, the radius of its base R=10cm. How will the volume of the cone change if we increase 

H by 3 mm and diminish R by 1 mm?  

Solution: The volume of the cone is 

HRV 2

3

1
  

We replace the change in volume approximately by the differential  
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Example 2.  

A cylinder radius and height have been measured direct in 5 measurements.  Its mean radius and height are: r =3cm; h

=10cm. Standard errors of means of radius and height are respectively: rs =0.01 and 
h

s =0.05). Find confidence limits of a 

measurement for area and volume of cylinder (95 % confidence interval). 

Solution.  

The volume and surface area of the cylinder are given by  

hrV 2   rhrS  22 2   

The mean of volume 

6.2822  hrV   

I. Standard error of the mean of volume is  
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Degrees of freedom according to table for n = 5 is tγ = 2.775(df = 4) . 

Absolute error 

52.635.2775.2  vstV   

Value of volume is  

52.66.282  VVV  cm
3 

Relative error 

%31.2%100
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52.6
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V
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The mean of surface  

92.2444.18852.5622 2  hrrS   

 

II. Standard error of the mean of area is 
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Degrees of freedom according to table for n = 5 is tγ = 2.775(df = 4) . 

Absolute error 

83.338.1775.2  sstS  

Value of surface is 

83.392.244  SSS  cm
2
. 

Relative error 
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Exercises 

Independent work in the class 

1. (Direct measurement) 

In a quality control test conducted by a local factory, a random sample of 16 plastic bearings being produced by an injection 

machine was taken and their diameter measured in cm. 

1.004 1.001 0.998 1.002 1.001 1.000 1.010 1.003 



0.999 1.006 1.000 0.998 1.003 1.005 1.001 1.001 

a) find the sample mean x and sample variance 
2s  of diameter. 

b) find a 95 % confidence interval for the man diameter μ 

c) find a 99 % confidence interval for the man diameter μ 

2. (Indirect measurement) 

5 tablet were weighted (m), then were measured their thickness (h) and diameter (d).  

Results are in table. 

m,g 0.338 0.390 0.387 0.389 0.388 

h,cm 0.53 0.54 0.53 0.55 0.54 

d, cm 0.92 0.92 0.93 0.93 0.91 

1. Find the density of tablet
hd

m
2

4


  . 

2. Find a 95 % confidence limits for the man density. 

 

Homework 

Exercises 

 1. A solid body„s density is calculated by a formula:
V

m
 . Where V is the volume of the body and m is the mass of 

the body. A cylinder„s density is calculated by a formula: 
ld

m
2

4


  . Where d is the diameter of the cylinder and l is its 

length. Find relative error for density, if d1 = 0,01282; d2 = 0,01283; d3 = 0,01283; d4 = 0,01283; d5 = 0,01281,

;,00002,008994,0 kgmm  ;,00005,00547,0 mll   5790  kg/m
3
. 

2. We have an ideal gas equation, pV = nRT. We perform an isothermal experiment (T = const.) and measure the change 

of volume (V) with pressure (p), so we need to find the error ΔV. Our 'experimental' equation takes the form:   pV=nRT, 

where n and R are constants (and as a rule we do not consider any errors for physical constants, therefore Δn = 0 and ΔR = 

0). We have, however, errors from measuring temperature, ΔT, and pressure, Δp. Obtain ΔV. 

3. Quinine sulfate concentrations in tablets (m = 0.25 g) detected by means of spectrophotometer analysis ( nm234 ) 

are: 99.9%; 99.8%; 99.6%; 99.1%; 99.2%; 99.2%. Find mean, absolute and relative errors (95 % confidence interval). 

4. Resistance Ri measurement gives results: 6.270 ohm; 6.273;6.277; 6.271; 6.276; 6.272; 6.278; 6.275; 6.277; 6.274.  

Find relative error for resistance (95 % confidence interval). 

5. We can find ethanol viscosity coefficient using formula  At/t0, where A=0.001 Pa·s, t and t0 the flowing time of 

ethanol and reference liquids (water) measured with the same viscometer. 5 measurement gives: t-6.2; 6.4; 6.4; 6.2; 6.3 s;  t0 

– 4.1; 4.1; 4.0; 4.0; 3.8 s. Find standard error of the mean of viscosity coefficient and  absolute and relative errors for ethanol 

viscosity coefficient (95 % confidence interval). 

6. The volume of cylinder is given by formula 
4

2hd
V


 . A cylinder radius and height have been measured direct in 10 

measurements.  Its mean diameter and height are: d =30 mm; h =50 mm. Standard errors of means of diameter and height 

are respectively:
d

s =0.1 mm and 
h

s =0.1 mm). Find standard errors of means of cylinder volume.  Obtain absolute and 

relative errors (95 % confidence interval). 

7. 10 measurement of lungs capillary diameter gives results: 2.83 mcm; 2.82; 2.81; 2.85; 2.87; 2.86; 2.83; 2.85; 2.83; 

2.84 mcm. Find standard errors of means of capillary diameter.  Obtain absolute and relative errors (95 % confidence 

interval). 

8. Solution concentration can be calculated using formula Cx=C0(d0/dx), where d0, dx layers thickness. 5 measurements 

give the following results: od =5.7 mm, 
0d

s =0.15 mm, xd =8.5 mm, 
xd

s =0.18 mm. Solution concentration C0=2%. Find 

absolute and relative solution concentration errors (95 % confidence interval). 

9. Microanalytical  method show oxygen concentration 9.29;%, 9.38; 9.35; 9.43; 9.53; 9.48; 90.61; 9.68%. Find a 95 % 

confidence limits for the concentration. Calculate absolute and relative concentration errors. 

10. 10 equals probes give sodium concentration: 1%; 1.05; 1.1; 0.99; 0.97; 0.98; 1.08; 1.07; 1.01; 1.03%.  Find a 95 % 

confidence limits for the concentration. 

 

 


